MICROMASTER 420,440 (SIEMENS)

A) METHOD FOR QUICK COMMISSIONING

P10 =1, START OF QUICK COMMISSIONING

P304 = MOTOR VOLTAGE RATING

P305 = MOTOR CRRENT

P307 = MOTOR POWER RATING (KW)

P308 = MOTOR COSØ RATING (POWER FACTOR RATING)

P311 = MOTOR RPM RATING

P700 = SELECTION OF COMMAND SOURCE

=1. FOR MANUAL OPERATION

=5, FOR USS COMMUNICATION

=6, FOR PROFIBUS

P1000 = SELECTION OF COMMAND SOURCE

=1, FOR MANUAL OPERATION

=5, FOR USS COMMUNICATION

=6, FOR PROFIBUS COMMUNICATION

P1120 = RAMP UP TIME IN SECONDS (0-650SECONDS)

P1121 =RAMP DOWN TIME IN SECONDS (0-650SECONDS)

P3900 =1, END OF QUICK COMMISIONING

//**Note to prevent the motor from getting failed due to over current**//

P305=Motor current (Very important)

P610=1

P640=100

P290=1

B) MISCALENOUS PARAMETERS

- P3 =3,TO SEE ALL THE PARAMETERS
- **R21** = TO CHECK THE MOTOR FREQUENCY
- **R27** = TO CHECK THE MOTOR CURRENT
- P5 =DISPLAY SELECTION
 - =21, FOR CONTINUOUSDISPLAY OF FREQUENCY
 - =27,FOR CONTINUOUS DISPLAY OF CURRENT
 - =25, FOR CONINUOUS DISPLAY OF VOLTAGE
- P295 =INVERTER FAN OFF DELAY TIME (0-3600 SECONDS)

P918 =INVERTER PROFIBUS ADDRESS

- R947 =LAST FAULT CODE
 - =947[0], FAULT 1
 - =947[1], FAULT 2
 - =947[2], FAULT 3
- R949 = FAULT VALUE
 - =949[0], FAULT VALUE 1
 - =949[1], FAULT VALUE 2
 - =949[2], FAULT VAULE 3
- R967 = CONTROL WORD1

Bitfields: Bit00	ON/OFF1	0	NO	1	YES
Bit01	•		YES	1	NO
	OFF2: Electrical stop	0		_	
Bit02	OFF3: Fast stop	0	YES	1	
Bit03	Pulse enable	0	NO	1	YES
Bit04	RFG enable	0	NO	1	YES
Bit05	RFG start	0	NO	1	YES
Bit06	Setpoint enable	0	NO	1	YES
Bit07	Fault acknowledge	0	NO	1	YES
Bit08	JOG right	0	NO	1	YES
Bit09	JOG left	0	NO	1	YES
Bit10	Control from PLC	0	NO	1	YES
Bit11	Reverse (setpoint inversion)	0	NO	1	YES
Bit13	Motor potentiometer MOP up	0	NO	1	YES
Bit14	Motor potentiometer MOP down	0	NO	1	YES
Bit15	Local / Remote	ō	NO	1	YES

R968 =STATUS WORD 1

Displays a	active status word of inverter (in binary) and can l	be used to di	agnose wh	nich comm	ands are active.
Bit00	Drive ready	0	NO	1	YES
Bit01	Drive ready to run	0	NO	1	YES
Bit02	Drive running	0	NO	1	YES
Bit03	Drive fault active	0	NO	1	YES
Bit04	OFF2 active	0	YES	1	NO
Bit05	OFF3 active	0	YES	1	NO
Bit06	ON inhibit active	0	NO	1	YES
Bit07	Drive warning active	0	NO	1	YES
Bit08	Deviation setpoint / act. value	0	YES	1	NO
Bit09	PZD control	0	NO	1	YES
Bit10	Maximum frequency reached	0	NO	1	YES
Bit11	Warning: Motor current limit	0	YES	1	NO
Bit12	Motor holding brake active	0	NO	1	YES
Bit13	Motor overload	0	YES	1	NO
Bit14	Motor runs right	0	NO	1	YES
Bit15	Inverter overload	0	YES	1	NO .

P1820 =REVERSE OUTPUT PHASE SEQUENCE

P1031 =SETPOIT MEMORY OF THE MOP

=0, MOP SETPOINT WILL NOT BE STORED

=1, MOP SETPOINT WILL BE STORED

C) PROCEDURE FOR FACTORY RESET

P10 = 30

P970 =1

D) PROCEDURE FOR SETTING USS COMMUNICATION

- i) FACTORY RESET THE DRIVE
- ii) PERFORM QUICK COMMISSIONING
- P2012 =2, USS PZD LENGTH
- P2013 =127, USS PKW LENGTH
- P700 =5, COMMAND SOURCE SELECTION
- P1000 =5, FREQUENCY SOURCE SELECTION
- P2009 = 0
- P2010 =BAUD RATE
 - =5, 4800 BAUD
 - =6,9600 BAUD
 - =7, 19200 BAUD
 - =8, 38400 BAUD
 - =9,57600 BAUD
 - =12, 115200 BAUD
- P2011 = INVERTER USS ADDRESS (0-31)

E) PROCEDDURE FOR SETTING IF HARD WIRE OUTPUTS ARE USED

- i) FACTORY RESET THE DRIVE
- ii) PERFORM QIUCK COMMISSIONING
- P700 =2,TERMINAL INPUT
- P701 =16, FIXED FREQUENCY 1
- P702 =16, FIXED FREQUENCY 2
- P1000 = 3, FIXED FREQUENCY
- P1001 =VALUE OF FIXED FREQUENCY 1 (EXAMPLE 25 HZ)
- P1002 =VALUE OF FIXED FREQUENCY 2 (EXAMPLE 25 HZ)

PROCEDURE TO GET 4-20 MILLI AMPERE FROM TERMINAL 12, 13 OF THE DRIVE

- P771 =21, IF OUTPUT IS NEEDED CORRESPONDING TO FREQUENCY
 - =27, IF OUTPUT IS NEEDED CORRESPONDING TO CURRENT
- P778 =4, VALUE Y1 FOR DAC SCALING
- P780 =20, VALUE Y2 FOR DAC SCALING
- P777 =0, VALUE X1 FOR DAC SCALING
- P779 =50.09, VALUE X2 FOR DAC SCALING
- P776 =0, IF 1 IS SELECTED 0-10VDC WILL APPEAR ACROSS 12,13 (PROVIDED
- 500Ω RESISTOR IS CONNECTED BETWEEN 12,13 OF DRIVE)
- R774 = ACTUAL DAC VALUE IN MA