
1

A Design Framework for Sensor
Integration in Robotic Applications

Dimitrios I. Kosmopoulos
National Centre for Scientific Research “Demokritos”

Institute of Informatics and Telecommunications
153 10 Agia Paraskevi Greece

1. Introduction

The benefits of open robot controllers’ architecture have not been ignored by the robot
constructors industry and in the recent years the closed proprietary architectures were partially
modified to allow access for the integration of external sensors. However, the application
integrators are still not able to exploit to the full extend this openness and installations that
employ sensors are still the exception in most industrial plants, mainly due to the development
difficulties. What is needed to the developers of robotic solutions is a generic method for rapid
development and deployment of sensors and robots to enable quick responses to the market
needs. This need is mainly dictated by the fact that many such applications sharing common
functionality are required in industry. By sharing and reusing design patterns there is a
possibility to reduce costs significantly. Therefore, a careful domain analysis that will identify the
similarities and differences between the various types of applications and which will provide the
infra structure for the development of new ones is of obvious importance.
A major hindrance in the development of sensor-guided robotic applications is the
complexity of the domain, which requires knowledge from the disciplines of robot vision,
sensor-based control, parallel processing and real time systems. A framework defines how
the available scientific knowledge can be used to create industrial systems by embodying
the theory of the domain; it clarifies the core principles and methods and the algorithmic
alternatives. Therefore new algorithms may be easily integrated through the addition or
substitution of modular components.
A design framework should provide the means for the integration of the entailed
components and give an overview of their collaboration. The technological advances may
then be easily adopted provided that the same cooperation rules will be applied.
In the past many academic and commercial frameworks have been presented, covering
parts of the disciplines entailed in sensor-guided robotic applications. However, the
available frameworks that can be used for sensor integration in robotic applications were
either limited in scope or were not developed targeting to that general goal. From the point
of view of the developer of sensor-guided robots the available frameworks treated the
general problem in a rather fragmented manner.
This work presents a design framework that defines the basic components that comprise
robotic sensor guided systems. It also shows how these components interact to implement
the most common industrial requirements and provides some application examples.

Source: Industrial Robotics: Programming, Simulation and Applicationl, ISBN 3-86611-286-6, pp. 702, ARS/plV, Germany, December 2006, Edited by: Low Kin Huat

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

www.intechopen.com

2 Industrial Robotics - Programming, Simulation and Applications

The rest of this work is structured as follows: the following section defines the context of this
research; section 3 summarizes the contribution of this work; section 4 identifies the
commonalities and differences between various industrial applications; section 5 describes
the user and the design requirements; section 6 describes the basic component, while section
7 shows how these components interact to implement the basic use cases; section 8
demonstrates the validity of the approach by presenting two applications: a sunroof fitting
robot and a depalletizing robot. The chapter ends with section 9, which presents the
conclusions and the future work.

2. Related work

The literature regarding integration of robotic systems is quite rich. On the one hand there
are many middleware systems, which are quite general, treat sensor data processing and the
control issues separately and do not address the issue of their interaction in typical use
cases. On the other hand some methodologies handle the issue of the cooperation between
sensors and actuators but are limited to certain sensor types, control schemes or application-
specific tasks. Thus methods that will bridge this gap are needed.
The middleware systems that have been proposed implement the interfaces to the
underlying operating system and hardware and they provide programming interfaces that
are more familiar to control application builders than the real-time operating system
primitives. Some the most interesting of these frameworks are the OSACA (Sperling & Lutz
1996) and the Orca (Orca 2006). The scope of these frameworks is to provide the infra
structure and not to specify what the application will functionally be able to do, what data it
will accept and generate, and how the end users and the components will interact. They can
be used in combination with our framework, which specifies the functionality and the
behavior for sensor-guided applications. Some other popular middleware platforms for
mobile robots are the Player/Stage/Gazebo (Vaughan et al. 2003), the CARMEN
(Montemerlo et al. 2003), the MIRO (Utz et al. 2002), and the CLARAty (Nesnas et al. 2006).
Many other attempts have been made to implement open control objects through the
introduction of class or component libraries. Such libraries providing motion control
functionality or the related components are the Orca (Orca 2006), the SMART (Anderson
1993), the START (Mazer et al. 1998). The integration of sensors for robot guidance is
addressed by libraries such as the Servomatic (Toyama et al. 1996), XVision (Hager &
Toyama 1998) but these libraries are limited to certain sensors, control schemes or
application-specific tasks thus they are inappropriate for general use.
For object detection in sensory data a large number of frameworks has been presented by
researchers and industry. Examples of such frameworks are the Image Understanding
Environment (ECV-Net –IUE 2000) and the vxl (VXL 2006). A large number of libraries are
available such as the Open CV (Intel 2006), the Halcon (MVTec 2006), etc. Such libraries or
frameworks may be used in combination to the proposed methodology.

3. Contribution

The proposed design framework capitalizes on the increased “openness” of modern robot
controllers, by extending the capabilities provided by the manufacturer, through intelligent
handling and fusion of acquired information. It provides a modular and systematic way in order
to encompass different types of sensory input; obviously, this approach can be fully profitable,

www.intechopen.com

A Design Framework for Sensor Integration in Robotic Applications 3

when the control system architecture allows for this information exchange to take place. The
presented work proposes how to develop software that will undertake the robot control at the
end-effector level by profiting of the sensory data. More specifically, it presents:

• A unified approach for implementing sensor guided robot applications considering
the restrictions posed by the controller manufacturers and the capabilities of the
available control and vision methods.

• A generalization of the available approaches to enable the integration of the
popular sensors to any open controller using a wide variety of control schemes.

• Patterns of use including open loop and closed loop control schemes.

• Concrete examples of the development of industrial applications facilitated by the
presented framework.

The proposed design is independent of the organizational layer (procedure management, user
interface, knowledge base) and execution levels (actuators, sensors) of the application and of the
rest layers of the robot controller (integration platform, operating system and hardware).

4. Domain description

A unified approach for the integration of industrial sensors in robotic systems through a
common object-oriented framework is reasonable because the necessary abstractions are
present for the sensors, for the robotic actuators and for their interactions. This will be
clarified through a domain description which will lead to the requirements.

4.1 Sensors

The sensors that are frequently used for industrial robotic tasks may be categorized to contact
and non-contact ones. Typical contact sensors that are used in industry are force-torque sensors
and tactile sensors. Popular non-contact sensors are cameras, laser sensors, ultrasound sensors
which give similar output and inductive, capacitive or Hall sensors for detection of the presence
of an object. The processing of the sensory data aims to the identification of features, which in
this context normally means the parts of the image with local properties (e.g., points, edges etc.),
from which useful information about the environment can be extracted. The use of sensors in
most cases presupposes that the inverse sensor model is available, which allows calculation of
the environment state from the sensory data.
The sensors can be treated in a unified manner in design due to the fact that the sensory data
can be described as vectors or 2-d arrays and what differs is the type of the sensory data
(bits, bytes, double precision numbers etc.). Examples of vector images (one-dimensional)
are the outputs of the force sensors and the laser sensors; examples of two dimensional
images are the outputs of the monochrome cameras, the tactile sensors and the arrays of
“binary” sensors; example of image with higher dimensions is the color image, which
consists of three monochrome channels (e.g., red, green and blue).

4.2 Robot controllers

The robot controller is the module that determines the robot movement that is the pose,

velocity and acceleration of the individual joints or the end-effector. This is performed

through motion planning and motion control. Motion planning includes the trajectory

definition considering its requirements and restrictions, as well as the manipulator dynamic

features. The robot operates in the joint space but the motion is normally programmed in the

www.intechopen.com

4 Industrial Robotics - Programming, Simulation and Applications

Cartesian space due to easier comprehension for humans. Therefore the controller has to

solve the inverse kinematic problem (the calculation of the joint states from the end-effector

state) to achieve a desired state in the Cartesian space for the end-effector; then the

controller must calculate the proper current values to drive the joint motors in order to

produce the desired torques in the sampling moments. The industrial robot controllers are

designed to provide good solutions to this problem within certain subspaces.

In closed architectures the user is able to program the robot movement by giving the target

states and eventually by defining the movement type, e.g., linear, circular etc. The controller

then decides how to reach these states by dividing the trajectory into smaller parts defined

by interpolation points. The time to perform the movement through a pair of interpolation

points is defined by the interpolation frequency; in order to reach the interpolation points

closed loop control at the joint level is performed with much higher frequency. Generally

the control at the joint level is not open to the programmer of industrial robots.

Fig. 1. Closed loop control scheme at the end-effector level. The end–effector’s state x is

measured by the sensing devices and the corresponding measurement x̂ is given as

feedback; then x̂ is compared to the desired state xd, the difference is fed to the regulator
and the regulation output is sent to the robot controller to move the manipulator. The joint-
level loop is also displayed.

Fig. 2 The cycles of robot and sensor and their synchronization for compensating for a target
movement. The total delay from the initial target movement to the new robot pose to
compensate for this movement depends mainly on the robot and sensor cycle (adapted from
(Coste-Maniere & Turro 1997)).

www.intechopen.com

A Design Framework for Sensor Integration in Robotic Applications 5

For tasks requiring low accuracy a “blind” trajectory execution with closed loop control at
the joint level is acceptable. However, for the tasks that require high accuracy, closed-loop
control at the end-effector level is necessary, during which the next interpolation points
have to be calculated in each interpolation cycle using external input; this need is satisfied
by the open architecture robot controllers, which unlike the typical closed architecture
controllers, permit the user or an external system to define precisely the interpolation points
and oblige the end-effector to strictly pass through them. However this restriction may
produce oscillations at the end-effector level depending partially on the coarseness of the
trajectory. These oscillations may be avoided if an additional regulator is used. The control
scheme presented in Fig. 1 is then applied.

4.3 Use of sensors by robots

The sensors can be used for robot guidance at the end-effector level to compensate for the
environmental uncertainties. Open and closed loop configurations are then applied. The
open loop configurations are the simplest, since the desired robot state is sent to the robot
controller and executed by the manipulator without concern about the actual end-effector
state. In the closed loop configurations the current end-effector state is compared to the
desired one in each interpolation cycle and corrected accordingly in the next cycle.
To identify the commonalities and the differences between the various closed loop control
schemes we present the various schemes that may be applied. The schemes identified in
(Hutchinson et al. 1996) for visual sensors are generally applicable also to the other sensors
types if their type permits it. For the extraction of the desired robot state the “Endpoint
Open Loop” scheme assumes perception of only the target’s state using non-contact sensors.
The “Endpoint Closed Loop” scheme assumes that both the end-effector and target state are
perceived and can be applied using contact and non-contact sensors. According to another
categorization the closed loop control schemes are divided to the “Position-based”, which
require extraction of the position for the perceived entities (end-effector and/or target),
while the “Image-based” schemes extract the desired robot state by exploiting directly the
image features.
In order to implement the aforementioned schemes various methods may be employed
according to the application needs. For position-based tasks the physical state of all the
observed objects (target, end-effector) is calculated; it is done through optimization methods
that use the 3D measurements (or image measurements) in combination to object and sensor
models and “fit” the model to the measurements. In image-based systems generally no
object or sensor model is used but only an equation that provides the current state from the
image measurements, provided that a Jacobian matrix is known (for more details the reader
may refer to (Hutchinson et al. 1996)). The Jacobian matrix may be calculated online or
(more frequently) offline through a training procedure.
In many applications a single sensor is not adequate for state calculation and in these cases tools
such such as Kalman or particle filters may be employed. From the measurement input the
system state is calculated, assuming that the system dynamics are linear around the small region
where the task is to be executed (for more details the reader may refer to (Valavanis & Saridis
1992)). The filters provide also estimation about the next system state and can also be used for
iterative solution of optimization problems in position-based applications.
Another common issue for the closed-loop control systems is that the ideal case in every
moment that the robot has to move to reach a desired state this state has to be based on

www.intechopen.com

6 Industrial Robotics - Programming, Simulation and Applications

sensory data that depict the current environmental situation. However, this is usually not
possible due to differences in the sensor and robot cycles and due to the time required for
processing and transmission of the sensory data (see Fig. 2). Therefore synchronization
schemes are necessary that may use prediction for the calculation of the currently required
state, based on previous data. For the open loop systems this problem does not exist because
the robot moves only after reading and processing the sensory data.

4.4 Application layered architecture

The architecture of a typical robotic application is illustrated in Fig. 3. The left part is adapted from
(Valavanis & Saridis 1992), where the levels of organization, processing and execution are
presented where intelligence increases from bottom to top. The organization level includes the
procedure manager that defines the robotic tasks execution sequence (usually by using a robot
programming language), the knowledge base that includes the system’s knowledge about the
environment and the user interface. The processing level includes the controller, which defines the
robot motion by using the processed input from internal and external sensors. The execution level
includes the actuators, which perform the requested tasks and the sensors that provide raw
sensory data to the system. The right part in Fig. 3 presents the layered architecture of the open
robot controllers as presented in OSACA (Sperling & Lutz 1996). The upper layers use the services
provided by the lower ones. The hardware layer includes the processing units that are used for the
software execution. The operating system controls and synchronizes the use of the resources and
acts as the intermediate layer between the hardware and the application software. The
communication implements the information exchange between the subsystems. The configuration
allows the installation and parameterization of the desired subsystems. The control objects are the
subsystems that provide the continuous processing functionality in the application. They are
interfaced to the software and hardware system layers through the software- and hardware - API
layer, which should provide plug and play capabilities.

Fig. 3. Typical layered architecture of robotic applications. The organizational level includes
the Procedure Manager, the Knowledge Base and the User Interface; the execution level
includes the Sensors and the Actuators; the processing level includes the robot controller,
which may be analyzed to the open architecture layers.

5. Requirements

5.1 Functional and non functional

A generic framework has to consider some functional and non-functional requirements
derived from the description about the sensors, the robot controllers and the control

www.intechopen.com

A Design Framework for Sensor Integration in Robotic Applications 7

schemes using sensors. These requirements as seen from the user perspective are briefly
presented in the following.
As regards the basic functional requirements, the framework should provide the infra structure
and patterns of use for modelling and interfacing of the sensors, should allow sensor integration
with industrial robotic controllers in open loop control and closed loop control schemes, should
use multiple sensors of the same or different type, should allow object recognition from the
sensory data and should use virtual sensory data and manipulators.
The basic non-functional requirements are related to the software quality factors. The
composed systems must be characterized by reliability, efficiency, integrity, usability,
maintainability, flexibility, testability, reusability, portability and interoperability.

5.2 Use cases

The tasks that the user requires to be executed (use cases) are more or less common for the
typical industrial applications and have to be covered by the framework. These are:

• Manual movement (offline). The user moves the robot manually using a user interface
module by specifying the target state.

• State reading. (offline-online). Some sections of the robot trajectory can be executed
without strict precision requirements. In these cases the system reads the desired
state from the organization level. The consecutive states, from which the robot
trajectory is composed, may be defined at organizational level through a robotic
language (where high-level tasks are defined) or may be pre-recorded during state
teaching.

• State teaching (offline). Trajectory sections (set-points) are recorded, while the user
moves manually the robot.

• Parameterization (offline). During parameterization the data needed for sensor-based
control are manually defined and stored. These data are essential for the operation of
system and they are retrieved each time a sensor-guided task has to be executed. For
each task the system must be parameterized separately. The parameterization may
regard the end-effector, the sensor, the regulator and the processing.

• Training (offline). Some special system parameters are automatically calculated e.g.,
inverse Jacobian matrices resulting from feature measurements while the robot
executes movement at predetermined steps for each degree of freedom.

• Sensor-guided movement (online). The system executes a task in real time. The task
includes movement with and without sensory feedback at the end-effector level.
When the robot moves without sensory feedback it reads from a database the
trajectory that has been stored during teaching. When sensory feedback is required
the movement is calculated online using the parameters that have been fixed during
parameterization; the parameters are loaded from a database.

5.3 Design requirements and fulfillment

There are several requirements in designing a reusable framework for sensor integration in
industrial robotic systems and they are dictated by the user requirements presented in the
previous section. The most important design requirements are presented next, followed by
the decisions for their fulfillment.
The composing elements have to be modular and decoupled to cover the requirements for
reusability, reliability, testability, usability, flexibility, integrity and maintainability. The

www.intechopen.com

8 Industrial Robotics - Programming, Simulation and Applications

semantic decoupling is achieved by grouping functionalities according to general needs and
not according to application specific requirements. The interconnection decoupling is
achieved by specifying the control objects layer (capsules, described in next section) in a
modular way. Each of them has well-specified responsibilities and attributes and
communicates with the other ones only through ports using the related protocols (described
in next section). By forcing capsules to communicate solely through ports, it is possible to
fully de-couple their internal implementations from any direct knowledge about the
environment and to make them highly reusable. Virtual sensors and robots can also be used
keeping the same protocols. The separation of objects is achieved through the use of the
object - oriented C++ language. Interface objects are used wherever possible for component
decoupling based on the different roles of the elements.

Fig. 4. The decomposition of the processing layer system to control objects (capsules) and
their interconnection with modules of the organization and the execution layer (black and
white boxes indicate client and server ports correspondingly). It is composed by the AM
(which communicates with the manufacturer’s controller), the SAI, the SC and the SM
capsules. The capsules’ activation and states are controlled by the ProcedureManager. The
system parameters are read from the ParameterDB, and the predefined states are provided
by the StateServer. The interface with the user is executed by the user interface, which
communicates with the processing layer through the ParameterDB.

The framework has to be independent of sensor - specific and industrial robot
controllers – specific implementations in order to provide integration of every sensor
to any industrial controller type. This is achieved by common communication rules
(protocols) for all sensors and controllers.

www.intechopen.com

A Design Framework for Sensor Integration in Robotic Applications 9

The framework has to be independent of specific control schemes to ensure wide

applicability. It is achieved by defining separate components handling the control scheme –

specific aspects of the design (AM, SC capsules as will be mentioned in next section.

The framework has to be independent of specific vision algorithms and recognition patterns

(features) as well. It should allow the organizational layer to change the used algorithms for

a task at run time without disturbing the execution at the control object layer. The use of the

“strategy” pattern (see e.g., (Douglass 2002)) allows for substitution of algorithms at run-

time from higher architectural layers without altering the control flow of the lower layers; it

applies to it also facilitates the easy integration of existing algorithms. It also allows easy

incorporation of existing code or frameworks. In this manner the fulfillment of the

requirements for reliability, efficiency, integrity, usability, maintainability, flexibility,

testability, and reusability can be achieved.

The data structures used for handling sensory information are variable mainly due to the

type of the acquired data. Therefore the related structures should be flexible enough to

incorporate data generated by a wide variety of sensors. The use of class templates that are

available in C++ provides a solution to the problem.

A balance has to be achieved between flexibility and usability. The framework should make

as less assumptions as possible but on the other hand the less assumptions made the more

effort is required to build a system. A good trade-off between flexibility and usability is

provided if we build a library of components, which is enriched as long as more

applications are implemented.
The implementation of the design decisions at the control object layer is demonstrated in the
following subsections. At the class level the design followed does not differ significantly
from popular approaches and thus will not be analyzed here.

6. Control objects

This work focuses on the control objects layer, which offers its services independently of the
organization, execution and its underlying layers with regard to the open controller
architecture. The control objects are usually associated with a particular sensor or actuator
type or they can just provide services based on input from other control objects. The
sequence of the provided services is defined by the organization level (procedure manager,
user interface) and is influenced by the environment.
For the modeling of the system structure we use the UML notation for real-time systems
that is proposed in (Selic & Rumbaugh 1998), where the notions of capsules, ports and
protocols are defined. Capsules are complex, physical, possibly distributed components
that interact with their surroundings through one or more signal-based boundary objects
called ports. A port is a physical part of the implementation of a capsule that mediates
the interaction of the capsule with the outside world— it is an object that implements a
specific interface. Each port of a capsule plays a particular role in a collaboration that the
capsule has with other objects. To capture the complex semantics of these interactions,
ports are associated with a protocol that defines the valid flow of information (signals)
between connected ports of capsules. In the presented design the capsules are the high
level system components (control objects), the ports are the interface classes and the
protocols are the communication schemes between the components. These are presented
in Fig. 4 and explained in the following.

www.intechopen.com

10 Industrial Robotics - Programming, Simulation and Applications

1 /* Initialization */
2 {COMMUNICATION WITH DB AND INITIALIZATION OF LOCAL PARAMETERS}
3
4 /*Main loop*/
5 while {CONDITION}
6 {
7 {RECEIVING INPUT}
8 {PROCESSING INPUT}
9 {SENDING OUTPUT}
10 }
11
12 /* Exit */
13 {STORING TO DB AND MEMORY DEALLOCATION}

Table 1. Execution scheme of a system process with the initialization phase, the main loop
and the exit phase.

Generally the role of the Controller that was presented in Fig. 3 is to receive the sensory data

from the sensors, to calculate the desired state and communicate the next state to the

actuator. It may be divided to the Manufacturer’s Controller (MC), which includes the

software and hardware provided by the robot vendor for motion planning and motion

control, and the sensor integration modules. These modules are displayed as capsules in Fig.

4 and are the Actuator Manager (AM), the Sensor Manager (SM), the State Calculator (SC) and

the Sensor-Actuator Interface (SAI); their communication with the organization and execution

layer modules is also presented.

Before we proceed to the description of the processing-layer capsules it is necessary to

describe briefly the organizational level. The role of the Procedure Manager is to issue

high level commands using events coming from the processing layer. It activates and

defines the states of all the processing layer capsules. The StateServer is the module of the

organization level that maintains the pre-defined robot states, which may include pose,

velocity and acceleration. The states may be retrieved from a database or may come as

input after online calculation. The ParameterDB stores all the parameters and attributes

that are useful for the execution of the capsules in the processing layer. The parameters’

update is performed online and offline. ParameterDB may also act as a link between the

User Interface and the processing layer.

We begin the description of the processing layer capsules with the AM. Its role is to calculate

the next robot state and to forward it to the MC for execution. The AM receives at each robot

cycle the current end-effector state from the MC and the desired state from the sensory

modules and then it calculates the next state (e.g., using a control law - state regulation

which helps to avoid the unwanted end-effector oscillations); the next state is then sent to

the MC. Different control laws can be applied to each DOF. The robot interpolation cycle

and the sensor cycle may differ significantly (multi-rate system). Therefore for closed loop

control sensor-guided tasks the robot needs to be coupled with the sensors by using the

intermediate capsule SAI; SAI receives asynchronously the desired state from the sensory

modules whenever it is made available by SC; SAI also forwards the current state - that is

calculated using sensory input - synchronously to AM at each robot interpolation cycle.

www.intechopen.com

A Design Framework for Sensor Integration in Robotic Applications 11

The role of the SM is to operate at the image level and to extract the image features from the

sensory data. On the contrary, the role of the SC is to operate at the workspace level and to

use the image-level measurements of SM to calculate the environmental state (e.g., physical

pose) of the end-effector or the target objects. The SM sends data requests to the sensors and

receives from them the sensory data. After image processing it outputs to the SC the feature

measurements. The SC receives the feature measurements from the SM along with the

current actuator state from the ΑΜ through SAI. It outputs to ΑΜ through the SAI the

desired state of the end-effector.
Each of the aforementioned capsules operates within a loop in a system process or thread.
The scheme of each of those system processes is displayed in Table 1. During initialization
the initial local parameters are loaded to memory from the ParameterDB and the appropriate
memory blocks are initialized (2). The main loop (5-10) performs the processing work. At
the beginning of the loop the data from other processes and the parameter database (when
appropriate) are read (7). Then the data become processed (8) and the results are sent to the
other system capsules or to the organization level (9). The integration platform may
implement synchronous or asynchronous communication from either or both sides. The
main loop commands may vary according to the capsule state. During the exit procedure,
which is executed when the task is finished, the memory is released and the data may be
stored into the ParameterDB.

The implementation of the design framework uses the services of a communication layer

(Fig. 3), which has to be deterministic to cover the needs of a real-time industrial system.

The respective communication is performed through the ports presented in Fig. 4.

The communication that is performed within the system follows the producer - consumer

concept. A method for communication of modules that reside in different processes is the

“proxy” pattern. In this pattern a pair of proxy objects, each of them residing on a different

thread/process are used. The local calls to the proxy objects are mapped to inter-process

messages (message destinations may be located either at compile time or at run-time

through broker objects).

The synchronization protocols are distinguished in synchronous and asynchronous. The

“message queuing” pattern can be used for implementing the asynchronous port

communication protocol, e.g., through queued messages of unit length. A synchronous

protocol can be implemented via the “rendezvous” pattern. The basic behavioral model is

that as each capsule becomes ready to rendezvous, it registers with a Rendezvous class and

then blocks until the Rendezvous class releases it to run. A detailed description of the use of

the proxy, message queuing and rendezvous patterns for inter-process communication and

synchronization may be found in (Douglass 2002). In the applications that we created using

the proposed framework the ports were implemented as proxy objects.

7. Use cases implementation

In the following we show how to implement the use cases by employing the control objects
defined in section 6. At the beginning we briefly describe the tasks that do not require sensory
input and namely the manual movement, the state reading and the teaching. Then we describe the
general pre- and post-conditions. Finally we discuss the interactions for the tasks that require sensory
input, which are the parameterization, the training and the sensor-guided movement.

www.intechopen.com

12 Industrial Robotics - Programming, Simulation and Applications

7.1 Operations without sensory feedback

During manual movement the user defines through a user interface module the desired robot
state, which results in robot movement. Normally the robot manufacturers provide user
interface units through which the user is able to move the robot. The user input is then
passed to the StateServer and the robot reaches the new state after several interpolation
cycles calculated in MC; for such tasks no third-party software modules are necessary.
During state reading the desired trajectory is read from the organizational level and executed
without sensory input. The desired states come from the StateServer. The state reading task
is usually executed before and after tasks that need sensory data; the robot moves without
external sensing until a state is reached (e.g., a nominal pose) at which a task that requires
sensory input has to be executed e.g., “blind” movement from a “home” robot position to a
nominal position where a grasping task is to be executed. The trajectory has been previously
recorded during the teaching task described next.
The teaching task is performed in order to record a trajectory (interpolation nodes) that will
be used later for robot guidance without sensory input (state reading). Its execution has as
follows: while the user moves the robot along the desired trajectory each intermediate state
is received synchronously from the robot controller and sent to the StateServer for storing.

Fig. 5. The general pattern for task sensor-guided movement.

7.2 Pre- and post conditions

We define a common pattern for the conditions that must be satisfied before the invocation of a
use case (task) as well as what happens at the end of its execution; this is displayed in Fig. 5.
Before the task invocation the ProcedureManager activates the capsules that participate in this
specific task and sets their states (1, 3, 5, 7). Through this activation message(s) the
ProcedureManager also sends to the capsules the unique id number of the task that is to be
executed. This id identifies the type of the task as well the environmental or (and) system
status parameters as they were (will be) defined during parameterization or training. Using
this id each capsule is able to load the task-specific parameters from the parameter database
e.g., threshold values for image processing, control variables for regulation etc. (messages 2,

www.intechopen.com

A Design Framework for Sensor Integration in Robotic Applications 13

4, 6, 8). This communication was previously mentioned in line 2 of Table 1. After the task
execution the participating capsules are deactivated or eventually set to idle state (messages
9, 10, 11, 12). Before deactivation the new parameters or results are stored into the
ParameterDB (line 13 of Table 1).
In the tasks that are presented in the following these pre-and post - conditions apply but
will omit their presentation for simplicity.

7.3 Parameterization

During the offline parameterization task the user changes manually the parameters used by
one or more capsules and is able to evaluate the impact of this change. The parameters are
changed to the ParameterDB through the user interface and then they are read
asynchronously by the active capsules and are applied. If appropriate the parameters may
be saved by the user to be used in future tasks. The interactions for the parameterization of
an SM capsule are given in the following:
The ProcedureManager instructs the SM to measure (1). The measurement is executed (2) and the
results are sent to the ParameterDB (3), from where they are accessed (asynchronously) by the
User Interface (4). The steps (2-5) are repeated until the user changes an SM parameter e.g., a
region of interest (6). The new parameters are read by the SM (7) and new measurements are
performed (8) and written to the ParameterDB (9). The new measurements are read
asynchronously by the User Interface (10). The steps 7-10 last for a sensor cycle and are
performed until the user decides to store permanently the content of the ParameterDB (11).

Fig. 6. A parameterization example for the SM capsule. The user changes the SM parameters
and the SM reads them through the ParameterDB and applies them in processing. Finally the
parameters are saved by the user.

7.4 Training

A sub use case of parameterization with particular interest is the training, which is an
automated calculation of some sensor-related system parameters. An example of training is

www.intechopen.com

14 Industrial Robotics - Programming, Simulation and Applications

the calculation of a feature Jacobian, which provides the system state from the image
features; another example is the calculation of the camera pose relative to the robot end-
effector (calibration). In these training tasks the end-effector moves stepwise along a
predefined training trajectory for each degree of freedom of the task space. During each
training step the sensor subsystem measures the features on the images that are acquired
synchronously by the cameras. When the training movement is completed the required
parameters are calculated based on the feature measurements; they may be task-specific
(e.g., feature Jacobian matrix) or system-specific (e.g., camera pose with respect to robotic
hand). Finally the calculated parameters are stored into the database.

RobotServer AM SEC SM StateServer ParameterDBProcedureMana

ger

4: SetState

3: CalculateNextState

steps 2-8 are repeated for

all training positions

steps 3-4 are repeated until

threshold reached

2: GetState

5: SetState

6: Measure

7: Measure

8: AppendMeasurements

9: Calculate

1: PM_ReadState

10: SetParameters

11: PM_TaskFinished

Fig. 7. The capsule interaction during training. When a task requiring sensory input is to be
trained the end-effector moves stepwise along a predefined training trajectory for each degree of
freedom of the task space and the sensor subsystem measures the image features. When the
training movement is completed the parameters are calculated and then stored into the database.

The capsules that participate in training are the AM, SC, SM that communicate with the
StateServer, ParameterDB. The StateServer holds the states defining the training movement. The
training interaction using a single SM instance is presented in detail in Fig. 7 and has as follows:

1. The ProcedureManager commands AM to read the desired training state from the
StateServer.

2. AM requests synchronously from SC the state vector that defines the next training
End Effector State (EES).

3. After receiving the requested state the next EES is calculated using a control law.
4. AM sets the next EES to the RobotServer to move the robot. The current EES is

returned.

www.intechopen.com

A Design Framework for Sensor Integration in Robotic Applications 15

Steps 3-4 may be repeated until the distance between the current and the desired training
state becomes smaller than a predefined threshold, because high positioning accuracy is
required; another scenario is that a timeout occurs without achieving the desired positioning
accuracy and in this case we have an exception that either stops training or warns the user.
Assuming the first case we have:

5. AM sends to the SC the currently achieved state, which acts as a trigger to activate
the sensors and measure. AM waits until the measurement execution.

6. SC requests from SM to measure and remains blocked waiting for response.
7. SM executes the measurement. After measuring, the SC receives the measurements

and becomes unblocked.
8. SC stores the measurement vector. Then the AM becomes unblocked.

Interaction steps 2 to 8 are repeated for each training step for all degrees of freedom of the
task space. After loop completion:

9. SC calculates the required parameters.
10. The parameters are sent to ParameterDB where they are stored.
11. The ProcedureManager is informed about the task termination.

After step (11) training is finished. The same procedure has to be repeated for all tasks that
need training. The steps (2-4) are executed in the robot interpolation cycle, while the
duration of step 7 is decided mainly by the duration of the sensor cycle.

7.5 Sensor-guided movement

During sensor-guided movement the robot moves based on the desired states that are

calculated after processing sensor input using the pre-defined parameters. This movement

may be performed using closed-loop control at the end-effector level, or open loop schemes

such as the “look-then-move” or “scan-then-move” that will be presented in the following.

In this task the actuator manager requests from the sensor – actuator interface the measured

EES. Due to the difference between the robot and the camera sampling rate the

measurement may not be available; in that case a zero state vector is received; else from the

state vector (desired state) a new vector is calculated (using a regulator for the reasons

explained in section 4.2) and sent to the robot controller. The procedure is repeated until the

difference between the desired state and the current becomes very small.

The task execution is performed in real time using the parameters defined during

parameterization and training (Fig. 8). The participating subsystems are the AM, SAI, SC,

SM and the StateServer, ParameterDB.

The RobotServer, ΑΜ and StateServer operate at robot interpolation rate, while the SC and SM,

operate at sensor sampling rate. The SAI communicates asynchronously with AM and SC.

Therefore the relative order of the signals between subsystems operating in different rates is just

indicative e.g., step 12 is not certain to precede 13. More specifically the interaction has as follows:

1. The ProcedureManager commands the AM to execute the task using sensory feedback.

2. AM requests an EES vector from SAI. The SAI has no available state error vector, due

to the fact that no sensor data have been acquired yet and thus returns a zero vector.

3. SAI requests the error from the SC asynchronously, triggering the sensor-related part

of the system to measure.

4. ΑΜ calculates from the error and the current state the desired EES using a regulator.

5. SC requests a measurement from SM synchronously, so that SC will be able to

calculate the state error.

www.intechopen.com

16 Industrial Robotics - Programming, Simulation and Applications

6. AM sends to the robot the correction vector.
7. The call is executed similarly to (2) and zero error is returned since there is no

measurement available yet.
8. Similarly to (4) the next EES is calculated using zero error.
9. The next state is set to the robot.
10. Similar to (7) since no measurement available.
11. Similar to (8).
12. Data acquisition and processing are finished and SM returns to SC the feature

measurement vector.
13. Similar to (9).
14. SC calculates the EES based on the new measurements.
15. SC finished the calculations and calls SAI asynchronously and sets the current error

vector.
16. ΑΜ requests from SAI the calculated error vector and SAI returns it.
17. ΑΜ calculates the desired EES from the input error using a regulator.
18. ΑΜ sends to the robot the state calculated in (17), which will move the robot towards

the desired EES.
The steps 2-18 are repeated until a threshold is reached. Then:

19. AM informs the ProcedureManager about the task termination.

Fig. 8. The capsule interactions during sensor-guided movement for a closed loop system.
The actuator manager requests from the SAI the measured error of the EES, the SAI returns
the current state error or zero (due to the different camera and robot interpolation rate) and
the regulated pose is sent to the robot controller. The procedure is repeated until the state
error becomes very small.

www.intechopen.com

A Design Framework for Sensor Integration in Robotic Applications 17

The task of sensor-guided movement in open-loop configurations is much simpler than the
respective closed-loop task. We will examine the „look-then-move“ and the „scan- then-
move“ cases. In the former the sensors acquire a local view of the target, while in the latter
the sensors acquire a global view of the workspace before executing the task.
In the “look-then-move” scheme, when the robot is at a nominal pose (without moving) the
sensors acquire the data, these data are processed, the new state is extracted and then the
end-effector moves to reach the required pose. Here there is no need for an AM capsule due
to the fact that there is no need to apply a regulator at the end-effector level.
In Figure. 9. the general interactions at the control object layer is described. The role of the
StateServer here is to provide the current end-effector state to the SC and to communicate the
calculated states based on the sensory data to the rest modules of the organizational level
and to the robot controller.
The StateServer (after receiving a command at the organizational level) sends to the SC the
current end-effector state (1) and then the SC requests synchronously from the SM to
acquire sensory data and provide image measurements (2). When the SM is ready with data
processing (3) the SC receives the measurements and continues with state calculation (4).
The calculated state is then sent to the StateServer (5). Then the state is forwarded to the
robot controller.
In the “scan-then-move” approach the robot moves initially to a predefined set of poses,
where the sensor is activated and thus a part of the workspace is scanned. The acquired
images are processed for feature extraction and registered for each pose using the end-
effector pose (or perhaps the images are processed after the execution of the scan
movement). From the extracted image features the end-effector states are calculated in order
to perform the task.
The StateServer (after receiving a command from the execution layer) sends the current state
to the SC. The SC requests synchronously from the SM to acquire data and measure (2);
when this is done (3) the measurements are registered (4) and the ProcedureManager becomes
informed about the end of the registration for the current end-effector pose. Steps 1-4 are
repeated for all predefined poses; then the next end-effector states are calculated (6) and sent
to the StateServer. The StateServer forwards them appropriately to the robot controller.

Fig. 9. Sensor-guided movement for a. look-then-move scheme b. the scan-then-move
execution scheme.

www.intechopen.com

18 Industrial Robotics - Programming, Simulation and Applications

8. Applications

The applicability of the framework has been verified through the implementation of
industrial applications. The UML language has been used for modeling and the C/C++
languages have been used for coding. The first application presented here is the sunroof
placement fitting, which aims to fit a sunroof onto a car body on the automobile production
line (Kosmopoulos et al. 2002).
We used the 6-DOF manipulator K-125 of KUKA with the KRC-1 controller, which permits
the employment of external software for control at the end-effector level. The task of fitting
the sunroof on the car body was performed using four CCD cameras, monitoring the four
corners of the sunroof opening. The corners were identified as the intersection points of the
monitored edges (Fig. 10).
The general scheme introduced in Fig. 4 has been used. For this application four instances of
the SM capsule have been employed and one of the AM, SAI and SC. As regards the SM
capsule, the acquired data were of type char due to the monochrome camera images and
thus image objects of type unsigned char were defined. In the SC capsule we extracted the
desired robot state through an image-based, endpoint open loop approach. For the system
state calculation we used an extended Kalman filter. The system state was given by the
vector:

Wk=[x, x’, y, y’, z, z’, a, a’, b, b’, c, c’]Tk

which refers to the end-effector pose error and the corresponding velocities with respect to a
nominal state, which is achieved when the sunroof is correctly placed on the target. For the
calculation of the end-effector pose we have used an over-determined system through
measuring the image coordinates xi, yi of the four corner points. The measurement vector fk
is given by the following equation:

fk = [x1, y1, x2, y2, x3, y3, x4, y4]

The system Jacobian has been assumed to be locally constant and has been calculated

through training. We have also used classes for coordinate transformations from the target

coordinate system to the end-effector, the robot base and other coordintate systems.

For the AM capsule we have implemented PID control laws for each degree of freedom. The

SAI was programmed to send the calculated state to the AM as soon it was requested. A

zero vector was sent until the next calculated state was available from SC.

All the use cases described in section 5.2 have been addressed. The closed loop

communication sequences described in sections 7 for a single SM capsule in this application

were executed in parallel for the four SM capsules.

A second industrial application implemented using our generic framework, addresses the

depalletizing (or robotic bin picking, or pick and place problem) in the context of which a

number of boxes of arbitrary dimensions, texture and type must be automatically located,

grasped and transferred from a pallet (a rectangular platform), on which they reside, to a

specific point defined by the user (Katsoulas & Kosmopoulos 2006).

We used the KR 15/2 KUKA manipulator, a square vacuum-gripper, and a time-of-flight

laser range sensor (model SICK LMS200), which provides 3D points detected by a reflected

laser beam. The sensor is mounted on the gripper and the latter is seamlessly attached to the

robot's hand (Figure 10).

www.intechopen.com

A Design Framework for Sensor Integration in Robotic Applications 19

Due to the fact that only a line is acquired in each sensor cycle, the robot moves the sensor

over the pile while acquiring data so that the whole pile can be viewed. The “scan then

move” process is utilized for registering one dimensional scan lines obtained by the laser

sensor during the robot hand movement, into a 2.5D range image. Finally the object states

are extracted from the constructed image and the boxes lying on the upper layer, which is

visible to the sensor, are grasped one by one and placed to a new position. For the next layer

the same procedure is executed until the pallet is empty.

The general scheme presented in Figure 4 has been implemented omitting the AM (due to

the fact that no closed-loop control functionality is needed), and the SAI (because the robot

moves only when the data acquisition is finished and no additional synchronisation is

needed); their connections are also omitted.

The communication with the manufacturer’s robot controller is achieved through the

organizational level (StateServer).

The processing layer of the application consists of one instance of the SM and the SC capsules;

the SM controls the sensor for data acquisition and the SC calculates the state of the target objects,

in other words their pose in the world coordinate system (target localization).

Sensor-guided movement follows the “scan then move” pattern, described in figure 9b.

Firstly, while the robot is at the initial scan position the StateServer sends the current robot

state to the SC thus triggering a message from SC to SM to acquire data. The SM acquires an

image (scan line), which is returned to SC. The SC receives as input the range image

corresponding to the current configuration of the object on the pallet; using the current

robot state the coordinates of the image elements are calculated in the world coordinate

system. These steps are repeated for all predefined end-effector poses and then the scan

lines are combined to a single image. This range image, which holds information about the

environment, is processed and from it the target object states (poses) are finally extracted

and sent to the organizational level through StateServer.

Fig. 10. (a) The sunroof fitting robot using four cameras in a closed loop control scheme and
(b), (c) the depalletizing system during scanning and grasping

9. Conclusions and future work

In this chapter we have introduced a design framework for developing software for
integrating sensors to robotic applications, provided that open controller architecture is
available. The design is general enough and enables the integration of the popular sensors
to any open controller using a wide variety of control schemes. By keeping some simple

www.intechopen.com

20 Industrial Robotics - Programming, Simulation and Applications

interfacing rules it is possible to replace modules, e.g., for implementing control laws for
the actuator DOFs or for processing the sensor data without much effort. This enables
using the freely available or commercial libraries-components maximising the benefit of
reusing well – tested modules. It is also possible to integrate multiple instances of the
related processes-capsules provided that the interfaces will be the same. The need for a
synchronisation module between sensors and actuator in closed loop control schemes has
been underlined.
The most common use cases for industrial applications have been presented and the
related interaction patterns have been demonstrated. They include some typical open
loop and closed loop control schemes. Furthermore, two concrete examples of the
development of industrial applications facilitated by the presented framework were
demonstrated. Some more applications, not presented here due to confidentiality
issues, ranging from robotic measurement to grasping have already employed this
approach.
Although the development of design solutions and frameworks for robots is a challenging
task we have managed to identify the similarities and differences for the sub-domain of
sensor-guided industrial manipulators. The development time for the related applications
has been significantly reduced to approximately one third of the initial development time
due to reusability of design and components. A good trade-off has been found between
over-generalizing and the application-specific design by building concrete examples based
on the general principles.
The presented work targets industry-specific systems, where the environment is structured
to a significant level. This means that the decisions/use cases taken at the organization level
are limited. More complex behaviors e.g., concerning mobile robots moving in unstructured
environments are not addressed here.
Anyone who deals with the development of robotic applications can benefit from this work,
especially those that seek to couple the mechanical flexibility of industrial robots, with the
flexibility to “build” various diverse applications with common characteristics.
In the future the integration in our scheme of a sophisticated configuration tool, such as
glue code (code level) and configuration tool in textual or graphical mode (integration
and application level), may facilitate the flexibility and the rapid deployment of sensor-
specific industrial applications, thus making our framework highly reconfigurable in a
dynamic manner. Another objective is to provide functionality through a black box
framework from an open integrated environment for the development and testing of the
control objects. This environment will support the use of many sensors and actuators and
will include their models for simulation purposes employing a variety of vision and
control algorithms.

10. References

Anderson, R. J. (1993). SMART: A Modular Architecture for Robots and Teleoperation, IEEE

International Conference on Robotics and Automation, pp. 416-421, Atlanta, Georgia,

May 1993

Corke, P. I. (1993). “Video rate robot visual servoing”, In:Visual Servoing, K. Hashimoto

(Ed.), vol. 7, Robotics and Automated Systems, pp. 257-283, World Scientific, ISBN

9810213646, Singapore

www.intechopen.com

A Design Framework for Sensor Integration in Robotic Applications 21

Coste-Manière, E., Turro, N. (1997). The MAESTRO language and its environment:

Specification, validation and control of robotic missions. IEEE International

Conference on Intelligent Robots and Systems, Vol. 2, pp. 836-841, Grenoble, France,

September 1997.

Douglass, B.P. (2002). Real-Time Design Patterns: Robust Scalable Architecture for Real-Time

Systems, Addison Wesley, ISBN 0201699567.

Hager, G., Toyama, K. (1998). XVision: A portable Substrate for Real-Time Vision

Applications, Computer Vision and Image Understanding, Vol. 65, No 1, January 1998,

pp.14-26, ISSN 1077-3142

Hutchinson, S., Hager, G., Corke, P. (1996). A tutorial introduction to visual servo control,

IEEE Transactions on Robotics and Automation, Vol. 12, No 5, May 1996, pp. 651-670,

ISSN 0882-4967.

Intel (2006). Open source computer vision library, http://www.intel.com/research/

mrl/research/opencv/

Katsoulas, D.K., Kosmopoulos, D.I, (2006). Box-like Superquadric Recovery in Range Images

by Fusing Region and Boundary based Information, Int. Conf. on Pattern

Recognition, Hong Kong, to appear.

Kosmopoulos, D.I, Varvarigou, T.A, Emiris D.M., Kostas, A., (2002). MD-SIR: A

methodology for developing sensor-guided industry robots, Robotics Computer

Integrated Manufacturing, Vol. 18, No 5-6, Oct-Dec 2002, pp. 403-419, ISSN 0736-

5845.

Mazer, E., Boismain, G., Bonnet des Tuves, J.M., Douillard, Y., Geoffroy, S., Doubourdieu,

J.M., Tounsi M., Verdot, F., (1998). START: An application builder for industrial

robotics, Proceedings of IEEE International Conference on Robotics and Automation, Vol.

2, pp. 1154-1159, May 1998, Leuven, Belgium.

MVTec (2006). http://www.mvtec.com/

Selic, B., Rumbaugh, J. (1998). “Using UML for modeling complex real-time systems”, White

Paper.

Sperling, W., Lutz, P., (1996). Enabling open control systems – an introduction to the

OSACA system platform, Robotics and Manufacturing, Vol. 6., ISRAM 97, New York,

ASME Press, ISBN 0-7918-0047-4.

Orca (2006). Orca: components for robotics http://orca-robotics.sourceforge.net/index.html

Toyama, K., Hager, G., Wang, J. (1996). “Servomatic: a modular system for robust

positioning using stereo visual servoing”, In Proceedings International Conference on

Robotics and Automation, Vol.3, pp. 2636-2643, April 1996, Minneapolis, USA.

Valavanis, Κ.P., Saridis, G.N. (1992). Intelligent Robotics Systems: Theory, Design and

Applications, ISBN 0792392507, Boston.

ECV-Net –IUE (2000). http://www-sop.inria.fr/robotvis/projects/iue/main.html

VXL (2006). The vxl homepage, http://vxl.sourceforge.net

Vaughan, R. T., Gerkey, B., and Howard, A. (2003). On device abstractions for portable,

reusable robot code, In Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, pp. 2421-2427,October 2003,Las Vegas, USA.

Montemerlo, M., N. Roy and S. Thurn (2003). Perspectives on standardization in mobile

robot programming: The Carnegie Mellon Navigation (CARMEN) toolkit. In

Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2436-2441,

October 2003, Las Vegas, USA.

www.intechopen.com

22 Industrial Robotics - Programming, Simulation and Applications

Utz, H., Sablatnog, S., Enderle, S., and Kraetzschmar, G. (2002). MIRO - middleware for

mobile robot applications, IEEE Transactions on Robotics and Automation, Vol. 18, No

4, August 2002, pp. 493-497, ISSN 0882-4967.

Nesnas, I. A.D., Simmons, R., Gaines, D., Kunz, C., Diaz-Calderon, A., Estlin, T., Madison,

R., Guineau, J., McHenry, M, Hsiang Shu, I., Apfelbaum, D., (2006). CLARAty:

Challenges and Steps Toward Reusable Robotic Software, International Journal of

Advanced Robotic Systems, Vol. 3, No. 1, March 2006, pp. 023-030, ISSN 1729-8806.

www.intechopen.com

Industrial Robotics: Programming, Simulation and Applications
Edited by Low Kin Huat

ISBN 3-86611-286-6
Hard cover, 702 pages
Publisher Pro Literatur Verlag, Germany / ARS, Austria
Published online 01, December, 2006
Published in print edition December, 2006

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation
technologies. Although being highly technical and complex in nature, the papers presented in this book
represent some of the latest cutting edge technologies and advancements in industrial robotics technology.
This book covers topics such as networking, properties of manipulators, forward and inverse robot arm
kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here.
The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic
and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using
the ideas and concepts presented herein.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dimitrios I. Kosmopoulos (2006). A Design Framework for Sensor Integration in Robotic Applications, Industrial
Robotics: Programming, Simulation and Applications, Low Kin Huat (Ed.), ISBN: 3-86611-286-6, InTech,
Available from:
http://www.intechopen.com/books/industrial_robotics_programming_simulation_and_applications/a_design_fra
mework_for_sensor_integration_in_robotic_applications

